metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

μ -Sulfato-1 κ O:2 κ O- μ -oxo-bis[tris(2pvridvlmethvl)amine- $\kappa^4 N.N'.N''.N'''$ diiron(III) diperchlorate acetonitrile/ water (0.75/0.25) solvate

Christine M. Smith and Richard E. Norman*

Department of Chemistry, Box 2117, Sam Houston State University, Huntsville, TX 77341 USA

Correspondence e-mail: norman@shsu.edu

Received 16 July 2007; accepted 1 September 2007

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.054; wR factor = 0.093; data-to-parameter ratio = 13.7.

The title complex, [Fe₂(C₁₈H₁₈N₄)₂O(SO₄)](ClO₄)₂.-0.75C₂H₃N·0.25H₂O, consists of two perchlorate ions, a solvent cavity with acetonitrile and water (disordered 3/1), and an Fe complex dication. The dication is a diiron(III) unit containing an oxo bridge and a sulfato bridge. The iron(III) centers are pseudo-octahedral, six-coordinate, with tris(2pyridylmethyl) amine (TPA) providing four N atoms. The distances and angles are typical for bent μ -oxo-bridged TPA complexes. The complex was the unexpected result of a reaction designed to produce a μ -sulfido- μ -carboxylatodiiron center.

Related literature

The preparation of the compound has been reported previously (Holz et al., 1993; Hazell et al., 1994). The structure is typical of a bent μ -oxo-diiron(III) complex with TPA (Norman et al., 1997). The sulfato bridge was produced by oxidation of sulfide, a result similar to the oxidation of methanol to formate in an Fe^{III} TPA system (Norman et al., 1998). For related literature, see: Mukherjee et al. (1988).

Experimental

Crystal data

[Fe2(C18H18N4)2O(SO4)]4- $\beta = 103.357 (5)^{\circ}$ $(ClO_4)_8 \cdot 3C_2H_3N \cdot H_2O$ V = 4119.3 (6) Å³ $M_r = 4154.72$ Z = 1Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 12.7031 (10) Å $\mu = 0.96 \text{ mm}^{-1}$ b = 24.477 (3) Å T = 90 Kc = 13.6165 (11) Å $0.30 \times 0.17 \times 0.05 \; \rm mm$

Data collection

Nonius KappaCCD (with Oxford Cryostream) diffractometer Absorption correction: multi-scan HKL SCALEPACK (Otwinowski & Minor, 1997) $T_{\min} = 0.728, T_{\max} = 0.946$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	595 parameters
$wR(F^2) = 0.093$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
8172 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

81911 measured reflections

 $R_{\rm int} = 0.042$

14279 independent reflections

8172 reflections with $I > 3\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Fe1-O1	1.788 (2)	Fe2-O1	1.807 (2)
Fe1-O2	2.012 (2)	Fe2-O3	1.950 (2)
Fe1-N11	2.153 (2)	Fe2-N21	2.220 (2)
Fe1-N12	2.138 (2)	Fe2-N22	2.138 (2)
Fe1-N13	2.140 (2)	Fe2-N23	2.129 (2)
Fe1-N14	2.242 (2)	Fe2-N24	2.213 (2)
Fe1-O1-Fe2	133.0 (1)		

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN for Windows (Molecular Structure Corporation, 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN for Windows.

We thank Frank Fronczek for data collection, and the Louisiana Board of Regents Support Fund and the Robert A. Welch Foundation (x-0011) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2197).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Hazell, A., Jensen, K. B., McKenzie, C. J. & Toftlund, H. (1994). Inorg. Chem. 33, 3127-3134.
- Holz, R. C., Elgren, T. E., Pearce, L. L., Zhang, J. H., O'Connor, C. J. & Que, L. Jr (1993). Inorg. Chem. 32, 5844-5850.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation. (1999). TEXSAN for Windows. Version 1.06. MSC, The Woodlands, Texas, USA.

1850–1861. Nonius (2000). *COLLECT*. Nonius BV, Delft, The Netherlands.

Norman, R. E., Leising, R. A., Yan, S. & Que, L. Jr (1998). Inorg. Chim. Acta, 273, 393–396.

453. Otwinowski, Z. & Minor, W. (1997). *Methods Enzymol.* **276**, 307–326.

Acta Cryst. (2007). E63, m2480-m2481 [doi:10.1107/S1600536807042857]

μ -Sulfato-1 κO :2 κO - μ -oxo-bis[tris(2-pyridylmethyl)amine- $\kappa^4 N$,N',N'',N''']diiron(III) diperchlor-ate acetonitrile/water (0.75/0.25) solvate

C. M. Smith and R. E. Norman

Comment

As the result of an attempt to synthesize a new class of diiron complexes with a μ -sulfido- μ -carboxylato diiron core using tris-(2-pyridylmethyl)amine (TPA), the title complex, (I), was prepared and structurally characterized. Since the replacement of a μ -oxo ligand by a μ -sulfido ligand has been little studied (Mukherjee *et al.*, 1988), we were not entirely sure what spectroscopic changes would accompany this replacement. To determine whether we had synthesized the desired sulf-ido-bridged species, we determined the structure. Surprisingly, instead of a μ -sulfido- μ -acetato diiron TPA species we had produced a μ -oxo- μ -sulfato diiron(III) TPA species. The sulfate must have been formed by oxidation of sulfide as no sulfate was added. The source of oxidant is undetermined, but presumably is either perchlorate or atmospheric oxygen. Similarly, a μ -oxo- μ -formato diiron(III) TPA species was produced by aerobic oxidation of a methanol solution of Fe(III) and TPA (Norman *et al.*, 1998).

The structures and spectral properties of several μ -oxo diiron(III) complexes with the TPA ligand have been previously reported (see for example, Norman *et al.*, 1997, or Norman *et al.*, 1998 and references therein). The title complex displays the typical pattern of inequivalent iron sites (Fe1 has the tertiary amine nitrogen atom of TPA *trans* to the oxo bridge, while Fe2 has the tertiary amine nitrogen atom of TPA *cis* to the oxo bridge) and a distinctly asymmetric oxo bridge [Fe1—O1 is 1.788 (2) Å and Fe2—O1 is 1.807 (2) Å], with pronounced lengthening of the bonds *trans* to the oxo bridge (Fig. 1).

Figure 2 is provided to indicate the numbering of atoms in the TPA ligands. N_{xy} provides the identifiers where x refers to the Fe number and the y identifies the ring. For both TPA ligands, N_{x1} is in the Fe1—O1—Fe2 plane. N_{x4} is the tertiary amine nitrogen atom.

The preparation of $[Fe_2(TPA)_2O(SO_4)](ClO_4)_2$ has been reported at least twice previously (Holz *et al.*, 1993; Hazell *et al.*, 1994), but its structure was not determined. Interestingly, the Fe—O—Fe angle was predicted, based on electronic spectroscopy, to be 134° (Holz *et al.*, 1993) which agrees well with the 133.0 (1)° reported here.

Experimental

Tris[(2-pyridinium)methyl]amine perchlorate (0.6017 g, 1.017 mmol), triethylamine (0.63 ml, 4.5 mmol) and sodium acetate (0.0417 g, 1.023 mmol) were dissolved in 40 ml MeOH. Fe(ClO₄)₃.10H₂O (0.5465 g, 1.023 mmol) was dissolved in 2 ml MeOH and this solution was added to the ligand solution. Na₂S·9H₂O (0.1482 g, 0.6170 mmol) was then added. The mixture was stirred for approximately 20 minutes and then allowed to sit for 20 minutes until a yellow precipitate formed, which was removed by filtration. The resultant filtrate turned bright green and was allowed to sit for four days. Small green rectangular plates formed which were isolated with cold MeOH, dried and dissolved in CH₃CN. The solution was placed in a sealed vessel containing ethyl acetate. Yellow-green rectangular plates formed after two days, one of which was selected for structure determination.

Refinement

Initially the structure was modeled with a single acetonitrile in the asymmetric unit with full occupancy. During refinement, the thermal parameters for this acetontrile grew larger and there was a persistent peak of electron density near the nitrile carbon atom (C1). Since this feature was not in a chemically reasonable position, it was assigned as an oxygen atom (O6) of a water molecule at 25% occupancy and the occupancy of the acetonitrile atoms was fixed at 75%. This produces an apparent close contact between O6 and C1 of 1.15 (2) Å.

The populations of C1, C2, N1 and O6 were refined to evaluate the 3:1 acetonitrile:water ratio. All of the populations increased as did the thermal parameters for the acetonitrile atoms. At the same time R and wR decreased, but not significantly. This model was rejected and the populations were fixed to preserve the 3:1 ratio.

With the exception of the disordered water, the hydrogen atoms were placed in calculated positions and assigned thermal parameters 1.2 times larger than the atoms to which theyµ-Sulfato-1 κO :2 κO -µ-oxo-bis[tris(2-pyridylmethyl)amine- $\kappa^4 N, N', N'', N'''$]diiron(III) diperchlorate acetonitrile/water (0.75/0.25) solvate are bound. The hydrogen atoms for the water were located in difference maps, and were also assigned thermal parameters 1.2 times larger than the oxygen atom to which they are bound.

Figures

Fig. 1. Perspective drawing of the $[Fe_2(TPA)_2O(SO_4)]^{2+}$ cation with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.

Fig. 2. The numbering of atoms in the TPA ligands.

$\mu - Sulfato - 1 \kappa O: 2 \kappa O - \mu - oxo - bis[tris(2-pyridylmethyl)amine - \kappa^4 N, N', N'', N'''] diiron(III) diperchlorate acetonitrile/water (0.75/0.25) solvate$

Crystal data

$[Fe_2(C_{18}H_{18}N_4)_2O(SO_4)]_4(ClO_4)_8\cdot 3C_2H_3N\cdot H_2O$	$F_{000} = 2132.00$
$M_r = 4154.72$	$D_{\rm x} = 1.675 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å
Hall symbol: -P 2yn	Cell parameters from 14215 reflections

a = 12.7031 (10) Å	$\theta = 2.5 - 32.0^{\circ}$
b = 24.477 (3) Å	$\mu = 0.96 \text{ mm}^{-1}$
c = 13.6165 (11) Å	T = 90 K
$\beta = 103.357 (5)^{\circ}$	Lath, yellow-green
V = 4119.3 (6) Å ³	$0.30 \times 0.17 \times 0.05 \text{ mm}$
Z = 1	

Data collection

Nonius KappaCCD (with Oxford Cryostream) dif- fractometer	14279 independent reflections
Radiation source: fine-focus sealed tube	8172 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 90 K	$\theta_{\text{max}} = 32.0^{\circ}$
ω scans with κ offsets	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan HKL SCALEPACK (Otwinowski & Minor, 1997)	$h = -18 \rightarrow 18$
$T_{\min} = 0.728, T_{\max} = 0.946$	$k = -36 \rightarrow 36$
81911 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(F_0) + 0.000841 F_0 ^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.093$	$\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 0.90	$\Delta \rho_{\text{min}} = -0.71 \text{ e } \text{\AA}^{-3}$
8172 reflections	Extinction correction: none
595 parameters	

Special details

Refinement. Refinement of F^2 . The weighted *R*-factor *wR* and goodness of fit are based on F^2 , conventional *R*-factors *R* are based on *F*. *R*-factors based on F^2 are statistically about twice as large as those based on *F*.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe1	0.22087 (3)	0.26340 (2)	0.93084 (2)	0.01043 (8)	
Fe2	0.29912 (3)	0.15787 (2)	0.81495 (2)	0.01094 (8)	
Cl1	0.35062 (5)	0.36704 (3)	0.38755 (4)	0.0136(1)	
Cl2	0.16176 (5)	0.02549 (3)	0.36029 (4)	0.0150(1)	
S5	0.46963 (5)	0.23004 (3)	0.96923 (4)	0.0123 (1)	
O1	0.20634 (13)	0.20867 (7)	0.84171 (11)	0.0124 (4)	
O2	0.37397 (13)	0.25008 (7)	1.00798 (11)	0.0129 (4)	
O3	0.43271 (13)	0.17723 (7)	0.91148 (12)	0.0161 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O4	0.55651 (13)	0.21686 (8)	1.05476 (12)	0.0166 (5)	
O5	0.4959(1)	0.26959 (8)	0.89952 (12)	0.0198 (5)	
O6	0.0659 (13)	0.4065 (8)	0.6270 (8)	0.119 (6)	0.25
011	0.4197 (1)	0.32356 (8)	0.36660 (12)	0.0185 (5)	
012	0.24272 (13)	0.34587 (8)	0.37924 (13)	0.0204 (5)	
013	0.3478 (2)	0.41082 (8)	0.31582 (13)	0.0223 (5)	
O14	0.3926 (2)	0.38753 (8)	0.48880 (12)	0.0215 (5)	
O21	0.0775 (1)	-0.00452 (8)	0.3920(1)	0.0244 (5)	
O22	0.1767 (2)	0.07740 (8)	0.4111 (1)	0.0313 (6)	
O23	0.1307 (2)	0.03407 (9)	0.25307 (13)	0.0298 (6)	
O24	0.2609(1)	-0.00557 (9)	0.3862 (1)	0.0264 (5)	
N1	0.0615 (5)	0.4712 (3)	0.6607 (5)	0.112 (3)	0.75
N11	0.0673 (2)	0.30205 (9)	0.8705 (1)	0.0125 (5)	
N12	0.2774 (2)	0.33111 (9)	0.8582 (1)	0.0130 (5)	
N13	0.1708 (2)	0.22604 (9)	1.0547 (1)	0.0119 (5)	
N14	0.2234 (2)	0.33223 (8)	1.03999 (13)	0.0121 (5)	
N21	0.3982 (2)	0.09698 (9)	0.7557 (2)	0.0153 (5)	
N22	0.2472 (2)	0.09465 (9)	0.9014 (1)	0.0135 (5)	
N23	0.3084 (2)	0.19461 (9)	0.6755 (1)	0.0134 (5)	
N24	0.1760 (2)	0.11150 (9)	0.7049(1)	0.0124 (5)	
C1	0.0943 (4)	0.4470 (2)	0.5982 (4)	0.041 (1)	0.75
C2	0.1257 (3)	0.4167 (2)	0.5289 (3)	0.0231 (10)	0.75
C111	0.0045 (2)	0.28996 (11)	0.7787 (2)	0.0150 (6)	
C112	-0.0826 (2)	0.32136 (12)	0.7327 (2)	0.0189 (7)	
C113	-0.1098 (2)	0.36695 (12)	0.7842 (2)	0.0206 (7)	
C114	-0.0454 (2)	0.37946 (11)	0.8778 (2)	0.0181 (7)	
C115	0.0439 (2)	0.34687 (10)	0.9182 (2)	0.0132 (6)	
C116	0.1165 (2)	0.35992 (11)	1.0196 (2)	0.0153 (6)	
C121	0.2846 (2)	0.33099 (11)	0.7613 (2)	0.0157 (6)	
C122	0.3387 (2)	0.37159 (11)	0.7221 (2)	0.0184 (7)	
C123	0.3848 (2)	0.41413 (12)	0.7840 (2)	0.0191 (7)	
C124	0.3736 (2)	0.41542 (11)	0.8834 (2)	0.0168 (6)	
C125	0.3194 (2)	0.37323 (10)	0.9184 (2)	0.0144 (6)	
C126	0.3123 (2)	0.36916 (11)	1.0274 (2)	0.0164 (6)	
C131	0.1278 (2)	0.17545 (10)	1.0520 (2)	0.0130 (6)	
C132	0.1007 (2)	0.15191 (11)	1.1349 (2)	0.0146 (6)	
C133	0.1142 (2)	0.18243 (12)	1.2231 (2)	0.0163 (6)	
C134	0.1573 (2)	0.23451 (11)	1.2264 (2)	0.0146 (6)	
C135	0.1879 (2)	0.25491 (10)	1.1420 (2)	0.0128 (6)	
C136	0.2468 (2)	0.30805 (11)	1.1426 (2)	0.0144 (6)	
C211	0.5072 (2)	0.09782 (11)	0.7736 (2)	0.0181 (7)	
C212	0.5643 (2)	0.06486 (12)	0.7223 (2)	0.0189 (7)	
C213	0.5072 (2)	0.03167 (12)	0.6458 (2)	0.0217 (7)	
C214	0.3957 (2)	0.03125 (11)	0.6247 (2)	0.0194 (7)	
C215	0.3433 (2)	0.06357 (10)	0.6826 (2)	0.0149 (6)	
C216	0.2224 (2)	0.06104 (11)	0.6700 (2)	0.0145 (6)	
C221	0.3020 (2)	0.07783 (11)	0.9932 (2)	0.0190 (7)	
C222	0.2591 (2)	0.03969 (12)	1.0487 (2)	0.0229 (7)	
C223	0.1578 (2)	0.01815 (12)	1.0076 (2)	0.0229 (7)	

C224	0.1017 (2)	0.03533 (11)	0.9122 (2)	0.0191 (7)	
C225	0.1484 (2)	0.07404 (11)	0.8619 (2)	0.0156 (6)	
C226	0.0923 (2)	0.09717 (11)	0.7605 (2)	0.0151 (6)	
C231	0.3918 (2)	0.22496 (11)	0.6615 (2)	0.0152 (6)	
C232	0.4004 (2)	0.24110 (11)	0.5658 (2)	0.0160 (6)	
C233	0.3215 (2)	0.22475 (11)	0.4830 (2)	0.0157 (6)	
C234	0.2350 (2)	0.19409 (11)	0.4975 (2)	0.0143 (6)	
C235	0.2300 (2)	0.18008 (10)	0.5949 (2)	0.0128 (6)	
C236	0.1359 (2)	0.14990 (11)	0.6194 (2)	0.0146 (6)	
H1	0.1659	0.3862	0.5606	0.028*	0.75
H2	0.1698	0.4380	0.4960	0.028*	0.75
H3	0.0639	0.4042	0.4807	0.028*	0.75
H4	0.0786	0.4258	0.6894	0.143*	0.25
Н5	0.1336	0.3869	0.6254	0.143*	0.25
H111	0.0213	0.2584	0.7445	0.018*	
H112	-0.1237	0.3124	0.6672	0.023*	
H113	-0.1711	0.3887	0.7554	0.025*	
H114	-0.0619	0.4101	0.9144	0.022*	
H115	0.0804	0.3492	1.0703	0.018*	
H116	0.1284	0.3983	1.0231	0.018*	
H121	0.2516	0.3022	0.7184	0.019*	
H122	0.3440	0.3703	0.6537	0.022*	
H123	0.4236	0.4421	0.7592	0.023*	
H124	0.4027	0.4449	0.9266	0.020*	
H125	0.2996	0.4046	1.0508	0.020*	
H126	0.3789	0.3555	1.0663	0.020*	
H131	0.1156	0.1553	0.9908	0.016*	
H132	0.0735	0.1157	1.1318	0.018*	
H133	0.0940	0.1676	1.2806	0.020*	
H134	0.1659	0.2561	1.2857	0.018*	
H135	0.3224	0.3018	1.1646	0.017*	
H136	0.2241	0.3327	1.1875	0.017*	
H211	0.5461	0.1220	0.8235	0.022*	
H212	0.6411	0.0649	0.7389	0.023*	
H213	0.5447	0.0093	0.6081	0.026*	
H214	0.3554	0.0093	0.5716	0.023*	
H215	0.2059	0.0309	0.7078	0.017*	
H216	0.1898	0.0557	0.6005	0.017*	
H221	0.3718	0.0925	1.0207	0.023*	
H222	0.2986	0.0286	1.1136	0.027*	
H223	0.1268	-0.0081	1.0440	0.027*	
H224	0.0325	0.0206	0.8823	0.023*	
H225	0.0526	0.1289	0.7697	0.018*	
H226	0.0443	0.0707	0.7235	0.018*	
H231	0.4463	0.2357	0.7185	0.018*	
H232	0.4595	0.2630	0.5574	0.019*	
H233	0.3267	0.2345	0.4168	0.019*	
H234	0.1798	0.1828	0.4416	0.017*	
H235	0.0993	0.1299	0.5619	0.018*	

H236	0.0875	0.1754	0.6379	0.0	18*	
Atomic disn	lacement narameter	$rs(\dot{a}^2)$				
momie uisp		1 ²²	1.33	r 12	<i>t</i> 13	1 23
F 1	U^{11}	0		0		0
Fel	0.0114 (2)	0.0108 (2)	0.0095 (2)	-0.0013 (1)	0.00342 (12)	-0.00123 (13)
Fe2	0.0098 (2)	0.0122(2)	0.0114(2)	-0.0019(1)	0.00351 (12)	-0.00255(13)
CII	0.0139(3)	0.0142(3)	0.0123(3)	0.0003(2)	0.0022(2)	0.0000(2)
012	0.01/6(3)	0.0125(3)	0.0155 (3)	0.0005 (2)	0.0050 (2)	-0.0008(2)
5 5	0.0105 (3)	0.0150 (3)	0.0115 (3)	-0.0023(2)	0.0024 (2)	-0.0025 (2)
01	0.0120 (8)	0.0125 (9)	0.0129 (8)	-0.0013(7)	0.0036 (6)	-0.0017(7)
02	0.0113 (8)	0.0155 (9)	0.0117 (8)	0.0003 (7)	0.0025 (6)	-0.0022 (7)
03	0.0128 (8)	0.0158 (10)	0.0185 (9)	-0.0016 (7)	0.0013 (7)	-0.0064 (7)
04	0.0133 (8)	0.0214 (10)	0.0140 (8)	-0.0006 (8)	0.0006 (7)	-0.0029 (7)
05	0.0187 (9)	0.0236 (11)	0.0189 (9)	-0.0047 (8)	0.0076 (7)	0.0028 (8)
06	0.122 (12)	0.21 (2)	0.032 (6)	0.14 (1)	0.034 (7)	0.041 (9)
011	0.0195 (9)	0.0171 (10)	0.0204 (9)	0.0031 (8)	0.0077 (7)	-0.0017 (7)
012	0.0131 (9)	0.0247 (11)	0.0242 (9)	-0.0046 (8)	0.0060 (7)	-0.0014 (8)
013	0.0272 (10)	0.0174 (10)	0.0215 (10)	-0.0002 (8)	0.0037 (8)	0.0055 (8)
014	0.0242 (10)	0.0238 (11)	0.0143 (9)	0.0007 (9)	0.0000 (7)	-0.0058 (8)
O21	0.0178 (10)	0.0219 (11)	0.0356 (11)	-0.0002 (8)	0.0106 (8)	0.0062 (9)
O22	0.0470 (13)	0.0149 (11)	0.0315 (11)	-0.0017 (10)	0.0077 (10)	-0.0082 (9)
O23	0.0487 (13)	0.0268 (12)	0.0147 (9)	0.0088 (10)	0.0090 (9)	0.0040 (8)
O24	0.0153 (9)	0.0271 (12)	0.0364 (11)	0.0071 (9)	0.0048 (8)	0.0000 (9)
N1	0.115 (5)	0.126 (6)	0.117 (5)	-0.037 (4)	0.072 (4)	-0.091 (5)
N11	0.0140 (10)	0.0121 (11)	0.0121 (9)	-0.0021 (8)	0.0045 (8)	-0.0008 (8)
N12	0.0132 (10)	0.0111 (11)	0.0147 (10)	-0.0012 (8)	0.0030 (8)	-0.0017 (8)
N13	0.0102 (9)	0.0138 (11)	0.0117 (9)	0.0004 (8)	0.0027 (8)	0.0002 (8)
N14	0.0138 (10)	0.0117 (11)	0.0103 (9)	-0.0017 (8)	0.0015 (7)	-0.0004 (8)
N21	0.0121 (10)	0.0167 (12)	0.0173 (10)	-0.0013 (9)	0.0040 (8)	-0.0027 (8)
N22	0.0141 (10)	0.0131 (11)	0.0144 (10)	0.0002 (9)	0.0054 (8)	-0.0019 (8)
N23	0.0122 (10)	0.0158 (11)	0.0130 (9)	-0.0022 (8)	0.0044 (8)	-0.0035 (8)
N24	0.0118 (10)	0.0115 (11)	0.0145 (10)	-0.0006 (8)	0.0046 (8)	-0.0012 (8)
C1	0.031 (2)	0.039 (3)	0.051 (3)	-0.014 (2)	0.007 (2)	0.000 (2)
C2	0.023 (2)	0.023 (2)	0.021 (2)	-0.003 (2)	0.000(1)	-0.002 (2)
C111	0.0164 (12)	0.0146 (13)	0.0147 (11)	-0.0034 (10)	0.0053 (10)	-0.0024 (10)
C112	0.0143 (12)	0.024 (2)	0.0167 (12)	-0.0028 (11)	-0.0002 (9)	-0.0003 (11)
C113	0.0162 (13)	0.017(1)	0.027 (1)	0.0021 (11)	0.0021 (10)	0.0022 (11)
C114	0.0199 (13)	0.015(1)	0.0186 (12)	0.0004 (11)	0.0031 (10)	-0.0016 (10)
C115	0.0153 (11)	0.0123 (12)	0.0135 (11)	-0.0013 (10)	0.0063 (9)	0.0011 (9)
C116	0.0155 (12)	0.0146 (13)	0.0164 (12)	0.0030 (10)	0.0048 (10)	-0.0027 (10)
C121	0.0164 (12)	0.0146 (13)	0.0170 (12)	0.0012 (10)	0.0056 (10)	0.0009 (10)
C122	0.0206 (13)	0.020 (2)	0.0154 (12)	0.0015 (11)	0.0066 (10)	0.0047 (10)
C123	0.0175 (13)	0.018 (1)	0.0229 (13)	-0.0010 (11)	0.0072 (10)	0.0059 (11)
C124	0.0150 (12)	0.0124 (13)	0.0213 (13)	-0.0010(10)	0.0006 (10)	0.0000 (10)
C125	0.0129(12)	0.0132 (13)	0.0168 (12)	0.0003 (10)	0.0029 (9)	0.0005 (10)
C126	0.0197(13)	0.0134(13)	0.0159(12)	-0.0062(11)	0.0040(10)	-0.0034(10)
C131	0.0093 (11)	0.0166 (13)	0.0127 (11)	0.0004 (10)	0.0020 (9)	-0.0017 (9)
			···· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	··· / / /	····· (/)

C132	0.0106 (11)	0.0142 (13)	0.0179 (12)	0.0007 (10)	0.0010 (9)	0.0035 (10)
C133	0.0132 (12)	0.023 (2)	0.0118 (11)	0.0006 (11)	0.0021 (9)	0.0037 (10)
C134	0.0132 (11)	0.022(1)	0.0091 (11)	0.0022 (11)	0.0028 (9)	-0.0003 (10)
C135	0.0113 (11)	0.0137 (13)	0.0128 (11)	0.0024 (10)	0.0018 (9)	-0.0003 (9)
C136	0.0176 (12)	0.0146 (13)	0.0109 (11)	-0.0007 (10)	0.0030 (9)	-0.0009 (9)
C211	0.0135 (12)	0.020 (2)	0.0210 (13)	-0.0023 (11)	0.0043 (10)	-0.0063 (10)
C212	0.0128 (12)	0.018(1)	0.027(1)	0.0010 (11)	0.0070 (10)	-0.0025 (11)
C213	0.0197 (13)	0.020 (2)	0.030(1)	0.0000 (11)	0.0130 (11)	-0.0070 (11)
C214	0.0169 (12)	0.018(1)	0.0239 (13)	-0.0013 (11)	0.0061 (10)	-0.0084 (11)
C215	0.0155 (12)	0.0116 (13)	0.0192 (12)	-0.0018 (10)	0.0070 (10)	-0.0027 (10)
C216	0.0136 (11)	0.0141 (13)	0.0160 (11)	-0.0030 (10)	0.0038 (9)	-0.0039 (9)
C221	0.0190 (13)	0.015(1)	0.0239 (13)	0.0029 (11)	0.0065 (10)	0.0002 (11)
C222	0.029 (2)	0.018 (2)	0.0222 (13)	0.0064 (12)	0.0086 (12)	0.0051 (11)
C223	0.030 (2)	0.015(1)	0.030(1)	0.0012 (12)	0.0183 (12)	0.0026 (11)
C224	0.0188 (13)	0.016(1)	0.0263 (13)	-0.0020 (11)	0.0130 (11)	-0.0030 (11)
C225	0.0166 (12)	0.0124 (13)	0.0201 (12)	0.0009 (10)	0.0089 (10)	-0.0043 (10)
C226	0.0111 (11)	0.0153 (13)	0.0203 (12)	-0.0023 (10)	0.0066 (9)	-0.0044 (10)
C231	0.0139 (12)	0.017(1)	0.0158 (12)	-0.0032 (10)	0.0048 (9)	-0.0028 (10)
C232	0.0143 (12)	0.018(1)	0.0164 (12)	-0.0036 (10)	0.0058 (9)	-0.0019 (10)
C233	0.0192 (13)	0.0144 (13)	0.0139 (11)	0.0023 (10)	0.0049 (10)	0.0013 (9)
C234	0.0149 (12)	0.0156 (13)	0.0119 (11)	0.0022 (10)	0.0017 (9)	-0.0011 (9)
C235	0.0100 (11)	0.0130 (13)	0.0155 (11)	0.0010 (9)	0.0035 (9)	-0.0023 (9)
C236	0.0106 (11)	0.017(1)	0.0154 (11)	-0.0008 (10)	0.0016 (9)	-0.0031 (10)

Geometric parameters (Å, °)

Fe1—O1	1.788 (2)	C135—C136	1.499 (3)
Fe1—O2	2.012 (2)	C211—C212	1.379 (3)
Fe1—N11	2.153 (2)	C212—C213	1.386 (4)
Fe1—N12	2.138 (2)	C213—C214	1.379 (4)
Fe1—N13	2.140 (2)	C214—C215	1.391 (3)
Fe1—N14	2.242 (2)	C215—C216	1.506 (3)
Fe2—O1	1.807 (2)	C221—C222	1.389 (4)
Fe2—O3	1.950 (2)	C222—C223	1.384 (4)
Fe2—N21	2.220 (2)	C223—C224	1.395 (4)
Fe2—N22	2.138 (2)	C224—C225	1.380 (3)
Fe2—N23	2.129 (2)	C225—C226	1.511 (4)
Fe2—N24	2.213 (2)	C231—C232	1.390 (3)
Cl1—O11	1.449 (2)	C232—C233	1.383 (3)
Cl1—O12	1.445 (2)	C233—C234	1.382 (3)
Cl1—O13	1.445 (2)	C234—C235	1.385 (3)
Cl1—O14	1.448 (2)	C235—C236	1.507 (3)
Cl2—O21	1.444 (2)	O6—H4	0.951
Cl2—O22	1.438 (2)	O6—H5	0.991
Cl2—O23	1.437 (2)	C2—H1	0.950
Cl2—O24	1.444 (2)	C2—H2	0.950
S5—O2	1.514 (2)	С2—Н3	0.950
S5—O3	1.529 (2)	C111—H111	0.950
S5—O4	1.444 (2)	С112—Н112	0.950

S5—O5	1.448 (2)	C113—H113	0.950
N1—C1	1.188 (7)	C114—H114	0.950
N11—C111	1.351 (3)	С116—Н115	0.950
N11—C115	1.343 (3)	C116—H116	0.950
N12—C121	1.344 (3)	C121—H121	0.950
N12—C125	1.348 (3)	С122—Н122	0.950
N13—C131	1.351 (3)	C123—H123	0.950
N13—C135	1.356 (3)	C124—H124	0.950
N14—C116	1.486 (3)	C126—H125	0.950
N14—C126	1.487 (3)	C126—H126	0.950
N14—C136	1.482 (3)	С131—Н131	0.950
N21—C211	1.349 (3)	С132—Н132	0.950
N21—C215	1.351 (3)	С133—Н133	0.950
N22—C221	1.347 (3)	C134—H134	0.950
N22—C225	1.345 (3)	C136—H135	0.950
N23—C231	1.343 (3)	С136—Н136	0.950
N23—C235	1.348 (3)	C211—H211	0.950
N24—C216	1.492 (3)	C212—H212	0.950
N24—C226	1.483 (3)	C213—H213	0.950
N24—C236	1.491 (3)	C214—H214	0.950
	1.332 (6)	C216—H215	0.950
	1.3/3 (4)	C216—H216	0.950
C112_C113	1.403 (4)	C221—H221	0.950
C114 C115	1.380 (4)	C222—H222	0.950
C115 C116	1.592 (4)	C223—n223	0.930
C121 C122	1.300(3) 1.282(2)	C224—H224	0.950
$C_{121} = C_{122}$	1.383(3)	C226 H226	0.950
$C_{122} = C_{123}$	1.382(4) 1.392(3)	C220—H220	0.950
C123 - C124	1 385 (3)	C232_H232	0.950
C125-C126	1.505 (5)	C233_H233	0.950
C131—C132	1 379 (3)	C234—H234	0.950
C132—C133	1 390 (4)	C236—H235	0.950
C133—C134	1.384 (4)	C236—H236	0.950
C134—C135	1.389 (3)		
014…C132 ⁱ	3.074 (3)	014…C223 ^{iv}	3.263 (4)
O22…C234	3.113 (3)	O4…C111 ⁱⁱ	3.269 (3)
O4…O6 ⁱⁱ	3.17 (2)	O24…C212 ⁱⁱⁱ	3.277 (3)
O24…C213 ⁱⁱⁱ	3.141 (3)	O12…C2	3.281 (4)
O5…C234 ⁱⁱ	3.150 (3)	N1…N21 ^{iv}	3.282 (7)
N1…C215 ^{iv}	3.152 (6)	O23…C132 ^{vi}	3.282 (3)
013···023 ^v	3.190 (3)	O11C233	3.291 (3)
N1···C214 ^{iv}	3.204 (6)	O14…C131 ⁱ	3.294 (3)
011C131 ⁱ	3.206 (3)		
O1—Fe1—O2	99.71 (7)	C212—C213—C214	119.6 (2)
O1—Fe1—N11	97.34 (8)	C213—C214—C215	118.8 (2)
O1—Fe1—N12	105.07 (7)	N21—C215—C214	121.9 (2)

O1—Fe1—N13	102.23 (8)	N21—C215—C216	116.7 (2)
O1—Fe1—N14	175.05 (7)	C214—C215—C216	121.4 (2)
O2—Fe1—N11	162.14 (8)	N24—C216—C215	113.4 (2)
O2—Fe1—N12	88.82 (7)	N22—C221—C222	121.8 (2)
O2—Fe1—N13	86.95 (7)	C221—C222—C223	118.8 (2)
O2—Fe1—N14	84.91 (7)	C222—C223—C224	119.2 (2)
N11—Fe1—N12	81.63 (8)	C223—C224—C225	118.9 (2)
N11—Fe1—N13	94.63 (7)	N22—C225—C224	121.9 (2)
N11—Fe1—N14	78.23 (7)	N22—C225—C226	115.1 (2)
N12—Fe1—N13	152.70 (8)	C224—C225—C226	123.0 (2)
N12—Fe1—N14	76.64 (7)	N24—C226—C225	108.2 (2)
N13—Fe1—N14	76.12 (7)	N23—C231—C232	121.8 (2)
O1—Fe2—O3	101.74 (7)	C231—C232—C233	118.8 (2)
O1—Fe2—N21	170.51 (7)	C232—C233—C234	119.4 (2)
O1—Fe2—N22	95.09 (7)	C233—C234—C235	119.0 (2)
O1—Fe2—N23	93.57 (8)	N23—C235—C234	121.7 (2)
O1—Fe2—N24	95.61 (7)	N23—C235—C236	115.1 (2)
O3—Fe2—N21	85.97 (7)	C234—C235—C236	123.2 (2)
O3—Fe2—N22	97.82 (7)	N24—C236—C235	109.7 (2)
O3—Fe2—N23	106.23 (8)	H4—O6—H5	106.94
O3—Fe2—N24	161.81 (8)	C1—C2—H1	109.47
N21—Fe2—N22	89.26 (8)	C1—C2—H2	109.47
N21—Fe2—N23	78.83 (8)	С1—С2—Н3	109.47
N21—Fe2—N24	77.34 (7)	H1—C2—H2	109.47
N22—Fe2—N23	152.16 (8)	Н1—С2—Н3	109.47
N22—Fe2—N24	75.04 (7)	H2—C2—H3	109.47
N23—Fe2—N24	77.81 (7)	N11—C111—H111	118.65
O11—Cl1—O12	109.2 (1)	C112—C111—H111	118.65
O11-Cl1-O13	109.4 (1)	С111—С112—Н112	120.57
O11-Cl1-O14	109.6 (1)	C113—C112—H112	120.57
O12—Cl1—O13	109.8 (1)	C112—C113—H113	120.78
O12-Cl1-O14	109.5 (1)	C114—C113—H113	120.78
O13-Cl1-O14	109.4 (1)	C113—C114—H114	120.23
O21—Cl2—O22	109.3 (1)	C115—C114—H114	120.23
O21—Cl2—O23	109.2 (1)	N14—C116—H115	108.21
O21—Cl2—O24	108.9 (1)	N14—C116—H116	108.21
O22—Cl2—O23	109.5 (1)	С115—С116—Н115	108.21
O22—Cl2—O24	109.7 (1)	С115—С116—Н116	108.21
O23—Cl2—O24	110.2 (1)	H115—C116—H116	109.46
O2—S5—O3	106.1 (1)	N12-C121-H121	119.01
O2—S5—O4	108.47 (9)	C122—C121—H121	119.02
O2—S5—O5	109.7 (1)	C121—C122—H122	120.51
O3—S5—O4	108.2 (1)	C123—C122—H122	120.51
O3—S5—O5	108.5 (1)	С122—С123—Н123	120.48
O4—S5—O5	115.4 (1)	C124—C123—H123	120.48
Fe1—O1—Fe2	133.0 (1)	C123—C124—H124	120.40
Fe1—O2—S5	128.9 (1)	C125—C124—H124	120.40
Fe2—O3—S5	131.9 (1)	N14—C126—H125	108.86
Fe1—N11—C111	123.1 (2)	N14—C126—H126	108.86

Ea1 N11 C115	1171(2)	C125 C126 H125	109.96
C111—N11—C115	117.1 (2)	C125—C126—H126	108.86
Fe1N12C121	1240(2)	H125_C126_H126	109.46
$Fe1_{112} C125$	116.1.(2)	N13—C131—H131	118 78
C121 - N12 - C125	119 4 (2)	C132—C131—H131	118.78
Fe1 = N13 = C131	124.2 (2)	C131—C132—H132	120.73
Fe1 - N13 - C135	116.8 (2)	C133—C132—H132	120.73
C_{131} N13 C_{135}	118 9 (2)	C132—C133—H133	120.75
Fe1—N14—C116	110.2 (1)	C134—C133—H133	120.26
Fe1 - N14 - C126	106.2(1)	C133—C134—H134	120.20
Fe1 - N14 - C136	107.1 (1)	C135—C134—H134	120.38
C116 - N14 - C126	112 8 (2)	N14—C136—H135	109.22
C116—N14—C136	109 5 (2)	N14-C136-H136	109.22
C126 - N14 - C136	111 1 (2)	C135—C136—H135	109.22
$Fe^2 N^2 C^{211}$	124.6 (2)	C135_C136_H136	109.22
Fe2—N21—C215	1157(2)	H135—C136—H136	109.22
C211_N21_C215	118.5 (2)	N21_C211_H211	118 75
$E_{e2} = N_{22} = C_{21}$	125.0 (2)	C_{212} C_{211} H_{211}	118.75
F_{e2} _N22_C221	115 5 (2)	C212—C212—H212	120.69
$C_{221} = N_{22} = C_{223}$	119.5(2)	$C_{211} = C_{212} = H_{212}$	120.09
$E_{e2} = N_{22} = C_{22}$	119.4(2) 124.7(2)	C212—C213—H213	120.09
$F_{e2} = N_{23} = C_{231}$	124.7(2)	$C_{212} = C_{213} = H_{213}$	120.18
$C_{231} N_{23} C_{235}$	119.3 (2)	C_{213} C_{213} H_{214} H_{214}	120.18
$E_{e2} = N24 = C216$	119.5 (2)	$C_{215} - C_{214} - H_{214}$	120.62
Fe2N24C226	104.7(1)	N24_C216_H215	108.49
Fe2N24C236	104.7(1) 105.4(1)	N24-C216-H216	108.49
$C_{216} N_{24} C_{230}$	103.4(1)	$C_{215} = C_{216} = H_{215}$	108.49
$C_{210} = N_{24} = C_{220}$	111.2 (2)	C215—C216—H216	108.49
$C_{210} = N_{24} = C_{230}$	111.2(2) 1130(2)	H215_C216_H216	108.45
N1_C1_C2	175.5 (6)	N22_C221_H221	119.40
N11_C111_C112	173.5(0)	C222_C221_H221	119.10
C111_C112_C113	122.7(2) 1189(2)	C222 C221 H221	120.61
C112_C113_C114	118.9(2)	C223_C222_H222	120.01
C113—C114—C115	119.5 (2)	C223 C222 H222	120.01
N11-C115-C114	121.8 (2)	C222 C223 H223	120.38
N11-C115-C116	117 4 (2)	C223—C224—H224	120.50
C114—C115—C116	1207(2)	C225 C221 H221	120.54
N14-C116-C115	114 5 (2)	N24-C226-H225	109.78
N12-C121-C122	1220(2)	N24-C226-H226	109.78
$C_{121} - C_{122} - C_{123}$	1122.0(2)	C225—C226—H225	109.78
C122 - C122 - C123	119.0 (2)	C225 C226 H226	109.78
C122 - C123 - C124	119.0 (2)	H225 C226 H226	109.76
N12-C125-C124	121 3 (2)	N23—C231—H231	119.12
N12 - C125 - C126	116.2 (2)	C232—C231—H231	119.12
C124-C125-C126	122.3 (2)	C231—C232—H232	120 59
N14-C126-C125	111 9 (2)	C233—C232—H232	120.59
N13-C131-C132	122 4 (2)	C232—C233—H233	120.39
$C_{131} - C_{132} - C_{133}$	118 5 (2)	C234—C233—H233	120.30
C132 - C133 - C134	119 5 (2)	C233—C234—H234	120.50

C133—C134—C135	119.2 (2)	C235—C234—H234	120.49
N13—C135—C134	121.3 (2)	N24—C236—H235	109.42
N13—C135—C136	115.8 (2)	N24—C236—H236	109.42
C134—C135—C136	122.8 (2)	С235—С236—Н235	109.42
N14—C136—C135	110.5 (2)	С235—С236—Н236	109.42
N21—C211—C212	122.5 (2)	H235—C236—H236	109.46
C211—C212—C213	118.6 (2)		
Fe1—O1—Fe2—O3	-0.8 (1)	N13—Fe1—N11—C111	-116.5 (2)
Fe1—O1—Fe2—N21	-144.7 (4)	N13—Fe1—N11—C115	76.4 (2)
Fe1—O1—Fe2—N22	98.3 (1)	N13—Fe1—N12—C121	-171.6 (2)
Fe1—O1—Fe2—N23	-108.2 (1)	N13—Fe1—N12—C125	16.3 (3)
Fe1—O1—Fe2—N24	173.7 (1)	N13—Fe1—N14—C116	-90.0(1)
Fe1—O2—S5—O3	-53.0 (2)	N13—Fe1—N14—C126	147.7 (2)
Fe1—O2—S5—O4	-169.0(1)	N13—Fe1—N14—C136	29.0 (1)
Fe1—O2—S5—O5	64.1 (2)	N13—C131—C132—C133	2.8 (4)
Fe1—N11—C111—C112	-167.5 (2)	N13-C135-C134-C133	3.7 (4)
Fe1—N11—C115—C114	170.6 (2)	N13-C135-C136-N14	30.5 (3)
Fe1—N11—C115—C116	-11.2 (3)	N14—Fe1—N11—C111	168.8 (2)
Fe1—N12—C121—C122	-168.6 (2)	N14—Fe1—N11—C115	1.6 (2)
Fe1—N12—C125—C124	169.9 (2)	N14—Fe1—N12—C121	-167.6 (2)
Fe1—N12—C125—C126	-5.1 (3)	N14—Fe1—N12—C125	20.4 (2)
Fe1—N13—C131—C132	177.2 (2)	N14—Fe1—N13—C131	168.2 (2)
Fe1—N13—C135—C134	179.3 (2)	N14—Fe1—N13—C135	-14.4(2)
Fe1—N13—C135—C136	-3.9(3)	N14-C116-C115-C114	-163.5(2)
Fe1—N14—C116—C115	-15.7(2)	N14-C126-C125-C124	161.7 (2)
Fe1—N14—C126—C125	37.3 (2)	N14-C136-C135-C134	-152.8(2)
Fe1—N14—C136—C135	-39.7(2)	N_{21} —Fe2—N22—C221	84.7 (2)
Fe2	-4.8 (1)	N_{21} —Fe2—N22—C225	-100.5(2)
Fe2—01—Fe1—N11	169.9 (1)	N21—Fe2—N23—C231	-82.7(2)
Fe2-O1-Fe1-N12	86 6 (1)	N_{21} Fe2 N_{23} C_{235}	89.0 (2)
Fe2-O1-Fe1-N13	-93.7(1)	N_{21} Fe2 N_{23} C235	11.2(1)
Fe2-O1-Fe1-N14	-1638(8)	N_{21} Fe2 N_{24} C226	130.8(2)
Fe2-03-85-02	43 9 (2)	N_{21} Fe2 N_{24} C236	-109.8(1)
Fe2-03-85-04	1601(1)	N21-C211-C212-C213	34(4)
$Fe^2 = 03 = 85 = 05$	-73.9(2)	N21_C215_C214_C213	29(4)
$Fe^2 N^{21} C^{211} C^{212}$	-1690(2)	N21_C215_C216_N24	2.5(+) 25.8(3)
$Fe^2 N^{21} C^{215} C^{214}$	166.9 (2)	$N22 = E_{P2} = N21 = C211$	-1154(2)
$Fe^2 N^{21} C^{215} C^{216}$	-15.8(3)	N22 Fe2 N21 C211	77.2(2)
$E_{e2} = N22 = C221 = C222$	15.8(3) 174.5(2)	$N22 = F_{22} = N23 = C231$	-1400(2)
$F_{e2} = N_{22} = C_{221} = C_{222}$	-1761(2)	N22 = Fe2 = N23 = C231	149.0(2)
$F_{e2} = N_{22} = C_{223} = C_{224}$	170.1(2)	N22 = R22 = N23 = C233	-814(2)
$F_{e2} = N_{22} = C_{223} = C_{220}$	2.7(3)	N22 = Fe2 = N24 = C210	38.1(1)
$F_{02} = N_{23} = C_{231} = C_{232}$	-170.4(2)	N22 = Fe2 = N24 = C220	157.6(1)
Fe2 = N23 = C235 = C234	-170.0(2)	$N_{22} = F_{22} = N_{24} = C_{250}$	137.0(1)
Fe2 = N23 = C233 = C230	12.4(3)	$N_{22} = C_{221} = C_{222} = C_{223}$	0.0(4)
r_{22} n_{24} c_{210} c_{213}	22.3(2)	1122 - 0.223 - 0.224 - 0.223	1.3(4)
Fe2 = N24 = C220 = C225	-47.0(2)	N22 = C223 = C220 = N24 N22 E ₂ 2 N21 C211	31.7(3)
re2 = 124 = 0.230 = 0.233	45.0(2)	$N_{23} = F_{22} = N_{21} = C_{211}$	09.9 (2) 77 5 (0)
55	30.1 (1) 12(4 (2)	N_{23} —Fe2— N_{21} — C_{213}	-11.5(2)
55—02—FeI—NII	-126.4 (2)	N25—Fe2—N22—C221	148.7 (2)

S5—O2—Fe1—N12	-68.9(1)	N23—Fe2—N22—C225	-36.5 (3)
S5—O2—Fe1—N13	138.0 (1)	N23—Fe2—N24—C216	92.3 (2)
S5—O2—Fe1—N14	-145.6(1)	N23—Fe2—N24—C226	-148.1(2)
S5-03-Fe2-01	-20.1(1)	N23—Fe2—N24—C236	-28.6(1)
S5—O3—Fe2—N21	154.3 (1)	N23—C231—C232—C233	-0.8(4)
S5-O3-Fe2-N22	-117.0 (1)	N23—C235—C234—C233	-1.4(4)
S5—O3—Fe2—N23	77.2 (1)	N23—C235—C236—N24	-38.6 (3)
S5—O3—Fe2—N24	177.6 (2)	N24—Fe2—N21—C211	169.8 (2)
01—Fe1—N11—C111	-13.5 (2)	N24—Fe2—N21—C215	2.3 (2)
01—Fe1—N11—C115	179.4 (2)	N24—Fe2—N22—C221	161.8 (2)
O1—Fe1—N12—C121	7.6 (2)	N24—Fe2—N22—C225	-23.4(2)
01—Fe1—N12—C125	-164.4(2)	N24—Fe2—N23—C231	-162.0(2)
01—Fe1—N13—C131	-7.0(2)	N24—Fe2— $N23$ —C235	9.7 (2)
01—Fe1—N13—C135	170.4 (2)	N24—C216—C215—C214	-156.9(2)
01—Fe1—N14—C116	-18.8(9)	N24—C226—C225—C224	-149.5(2)
01—Fe1—N14—C126	-141.2(8)	N24—C236—C235—C234	143.8 (2)
01 - Fe1 - N14 - C136	100 2 (8)	C_{111} N_{11} C_{115} C_{114}	29(3)
$01 - Fe^2 - N^2 - C^{211}$	127.2 (4)	C111—N11—C115—C116	-1789(2)
$01 - Fe^2 - N^2 - C^{215}$	-40.2(6)	C_{111} C_{112} C_{113} C_{114}	2 2 (4)
$01 - Fe^2 - N^2 - C^2 $	-103.7(2)	C112—C111—N11—C115	-0.5(3)
$01 - Fe^2 - N^{22} - C^{225}$	71 1 (2)	C112 - C113 - C114 - C115	0.0(4)
$01 - Fe^2 - N^2 - C^2 $	103.0(2)	C_{113} C_{114} C_{115} C_{116}	1792(2)
$01 - Fe^2 - N^2 - C^{235}$	-85.2(2)	C_{115} C_{116} N_{14} C_{126}	102.6(2)
$01 - Fe^2 - N^2 - C^{216}$	-1752(1)	$C_{115} = C_{116} = N_{14} = C_{136}$	-1332(2)
$01 - Fe^2 - N^2 - C^{226}$	-557(2)	$C_{116} = N_{14} = C_{126} = C_{125}$	-834(2)
$01 - Fe^2 - N^2 - C^{236}$	63 8 (1)	$C_{116} N_{14} C_{136} C_{135}$	79.8 (2)
O2 - Fe1 - N11 - C111	149 1 (2)	C_{121} N_{12} C_{125} C_{124}	-2.5(4)
02—Fe1—N11—C115	-180(3)	$C_{121} = N_{12} = C_{125} = C_{126}$	-1775(2)
02—Fe1—N12—C121	107 3 (2)	$C_{121} - C_{122} - C_{123} - C_{124}$	-13(4)
Ω_{2}^{2} Fe1—N12—C125	-647(2)	C122 - C121 - N12 - C125	3 2 (4)
02—Fe1—N13—C131	-1063(2)	C_{122} C_{123} C_{124} C_{125}	1.9(4)
02—Fe1—N13—C135	71.1.(2)	C_{123} C_{124} C_{125} C_{125} C_{126}	1.5(1)
Ω^2 —Fe1—N14—C116	-1781(1)	$C_{125} = C_{126} = 0.125 = 0.126$	171.0(2) 1533(2)
Ω^2 —Fe1—N14—C126	59.6 (1)	C126 - N14 - C136 - C135	-155.0(2)
Ω^2 —Fe1—N14—C136	-591(1)	C_{131} N13 C_{135} C_{134}	-31(3)
Ω_{3} Fe ² N ²¹ C ²¹¹	-175(2)	C_{131} N13 C_{135} C_{136}	173.6(2)
Ω_{3} Fe ² N ²¹ C ²¹⁵	17.5(2)	C_{131} C_{132} C_{133} C_{134}	-21(4)
Ω_{3} Fe ² N ²² C ²¹	-11(2)	C_{132} C_{131} N_{13} C_{135} C_{135}	-0.2(3)
Ω_{3} Fe ² N ²² C ²²⁵	1.1(2) 173 7 (2)	C_{132} C_{133} C_{134} C_{135}	-11(4)
Ω_{3} Fe ² N ²³ C ²³¹	-0.3(2)	C_{133} C_{134} C_{135} C_{135} C_{136}	$-172 \ 8 \ (2)$
Ω_{3} Fe ² N ²³ C ²³⁵	1714(2)	$C_{211} N_{21} C_{215} C_{214}$	-14(4)
Ω_{3} Fe ² N ²⁴ C ²¹⁶	-127(3)	$C_{211} = N_{21} = C_{215} = C_{216}$	1759(2)
Ω_{3} Fe ² N ²⁴ C ²²⁶	106.9(2)	$C_{211} - C_{212} - C_{213} - C_{214}$	-1.7(4)
O_3 —Fe2—N24—C236	-1336(2)	C_{212} C_{211} N_{21} C_{215}	-1.8(4)
N11—Fe1— $N12$ — $C121$	-87.8 (2)	C_{212} C_{213} C_{214} C_{215}	-1.3(4)
N11—Fe1—N12—C125	100.2 (2)	C_{213} C_{214} C_{215} C_{216}	-1742(2)
N11—Fe1—N13—C131	91 5 (2)	C_{215} C_{216} C_{2	-1386(2)
N11—Fe1—N13—C135	-91.1 (2)	C_{215} C_{216} N_{24} C_{236}	95.0 (2)
N11—Fe1—N14—C116	7.8 (1)	$C_{216} N_{24} C_{226} C_{225}$	72.6 (2)
	- < /		

N11—Fe1—N14—C126	-114.5 (2)	C216—N24—C236—C235	-78.3 (2)
N11—Fe1—N14—C136	126.9 (1)	C221—N22—C225—C224	-1.0 (4)
N11-C111-C112-C113	-2.0 (4)	C221—N22—C225—C226	177.8 (2)
N11-C115-C114-C113	-2.6 (4)	C221—C222—C223—C224	-0.1 (4)
N11-C115-C116-N14	18.3 (3)	C222—C221—N22—C225	-0.1 (4)
N12—Fe1—N11—C111	90.8 (2)	C222—C223—C224—C225	-0.9 (4)
N12—Fe1—N11—C115	-76.4 (2)	C223—C224—C225—C226	-177.2 (2)
N12—Fe1—N13—C131	172.2 (2)	C225—C226—N24—C236	-162.0 (2)
N12—Fe1—N13—C135	-10.4 (3)	C226—N24—C236—C235	156.8 (2)
N12—Fe1—N14—C116	91.9 (2)	C231—N23—C235—C234	2.2 (4)
N12—Fe1—N14—C126	-30.4 (1)	C231—N23—C235—C236	-175.4 (2)
N12—Fe1—N14—C136	-149.1 (2)	C231—C232—C233—C234	1.6 (4)
N12-C121-C122-C123	-1.3 (4)	C232—C231—N23—C235	-1.1 (4)
N12-C125-C124-C123	-0.1 (4)	C232—C233—C234—C235	-0.6 (4)
N12-C125-C126-N14	-23.4 (3)	C233—C234—C235—C236	176.0 (2)
Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1, -y, -z+1; (iv) -x+1/2, y+1/2, -z+3/2; (v) -x+1/2, y+1/2, -z+1/2; (vi) x, y, z-1.			

